• We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • The human microbiome -

    Our own social network of microbial friends

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Application of stable-isotope labelling techniques for the detection of active diazotrophs

Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation (BNF) is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N-RNA-SIP approach optimized for environmental samples and benchmarked to 15N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.

Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D
2017 - Environmental Microbiology, in press

NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host

The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.

Volland J-M, Schintlmeister A, Zambalos H, Reipert S; Mozetič P, Espada-Hinojosa S; Turk V, Wagner M, Bright M
2017 - ISME J., in press

Bottled aqua incognita: Microbiota assembly and dissolved organic matter diversity in natural mineral waters

Background: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown.

Results: We performed a multifaceted analysis of microbiota and DOM diversity in twelve natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than ten species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM.

Conclusions. The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.

Lesaulnier CC, Herbold CW, Pelikan C, Gérard C, Le Coz X, Gagnot S, Berry D, Niggemann J, Dittmar T, Singer GA, Loy A
2017 - Microbiome, 5: 126

Lecture series

The rapidly expanding universe of giant viruses

Chantal Abergel
Centre National de la Recherche Scientifique & Aix-Marseille University
29.06.2017
16:30 h
Hörsaal 2, UZA 1, Althanstr. 14, 1090 Wien

The importance of growing slowly: roles for redox-active "antibiotics" in microbial survival and development

Dianne Newman
California Institute of Technology
24.05.2017
14:00 h
Hörsaal 2, UZA1, Althanstr. 14, 1090 Wien

Harnessing Bacteria for Drug Discovery: from Bioprospecting to Synthetic Biology

Sergey Zotchev
Department of Pharmacognosy, University of Vienna
26.01.2017
12:00 h
Hörsaal 2. (UZA I), Althanstrasse 14, A-1090 Vienna